Skip to main content

Fetale Programmierung und funktioneile Teratologie

  • Chapter

Part of the book series: Molekulare Medizin ((MOLMED))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   29.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

3.3.6 Literatur

  • Aerts L, Van Assche FA (1979) Is gestational diabetes an acquired condition? J Dev Physiol 1:219–225

    PubMed  CAS  Google Scholar 

  • Aerts L, Holemans K, Van Assche FA (1990) Maternal diabetes during pregnancy: consequences for the offspring. Diabetes Metab Rev 6:147–167

    Article  PubMed  CAS  Google Scholar 

  • Andria ML, Simon EJ (1999) Localization of promotor elements in the human mu-opioid receptor gene and regulation by DNA methylation. Mol Brain Res 70:54–65

    Article  PubMed  CAS  Google Scholar 

  • Barker DJP (1998) In utero programming of chronic disease. Clinical Science 95:115–128

    Article  PubMed  CAS  Google Scholar 

  • Bergmann KE, Mensink GB (1999) Körpermaße und Übergewicht. Gesundheitswesen 61:115–120

    Google Scholar 

  • Bergmann RL, Bergmann KE, Eisenberg A (1984) Offspring of diabetic mothers have a higher risk for childhood overweight than offspring of diabetic fathers. Nutr Res 4:545–552

    Google Scholar 

  • Bernard C (1849) Chiens rendu diabeétiques. Compt Rend Soc Biol 1:60

    Google Scholar 

  • Bernardis LL, Bellinger LL (1993) The lateral hypothalamic area revisited: neuroanatomy, body weight regulation, neuroendocrinology and metabolism. Neurosci Biobehav Rev 17:141–193

    Article  PubMed  CAS  Google Scholar 

  • Bester TH (2000) The DNA methyltransferases of mammals. Hum Mol Gen 9:2395–2402

    Google Scholar 

  • Bhattacharya SK, Ramchandani S, Cervoni N, Szyf M (1999) A mammalian protein with specific demethylase activity for mCpG DNA. Nature 397:579–583

    PubMed  CAS  Google Scholar 

  • Bird A (2002) DNA methylation patterns and epigenetic memory. Gen Dev 16:6–21

    CAS  Google Scholar 

  • Bird A, Wolffe AP (1999) Methylation-induced repression — belts, braces, and chromatin. Cell 99:451–454

    Article  PubMed  CAS  Google Scholar 

  • Bottazzo GF, Bosi E, Todd J, Belfiore A, Pujol-Borvell R (1988) Inappropriate HLA class II expression on epithelial cells: basis for new Interpretation of HLA association in autoimmune endocrine disorders. In: Farid NR (ed) Immunogenetics of endocrine disorders. Liss, New York, pp 133–143

    Google Scholar 

  • Bottazzo GF, Bosi E, Bonifacio E, Mirakian R, Todd I, Pujol-Borrell R (1989) Pathogenesis of type I (insulin-dependent) diabetes: possible mechanisms of autoimmune damage. Br Med Bull 45:37–57

    PubMed  CAS  Google Scholar 

  • Bray GA, Fisler J, York DA (1990) Neuroendocrine control of the development of obesity: understanding gained from studies of experimental animal models. Front Neuroendocrinol 12:128–181

    Google Scholar 

  • Bühling KJ, Dudenhausen JW (2000) Ein Risiko für Mutter und Kind. Berliner Ärzte 37:15–17

    Google Scholar 

  • Clark SJ, Harrison J, Frommer M (1995) CpNpG methylation in mammalian cells. Nature Gen 10:20–27

    CAS  Google Scholar 

  • Cooper DN, Krawczak M (1989) Cytosine methylation and the fate of CpG dinucleotides in vertebrate genomes. Hum Gen 83:181–188

    CAS  Google Scholar 

  • Corness JD, Burbach JP, Hökfelt T (1997) The rat galaningene promoter: response to members of the nuclear hormone receptor family, phorbol ester and forskolin. Mol Brain Res 47:11–23

    Article  PubMed  CAS  Google Scholar 

  • Crowther NJ, Trusler J, Cameron N, Toman M, Gray IP (2000) Relation between weight gain and beta-cell secretory activity and non-esterified fatty aeid production in 7-year-old African children: results from the birth to ten study. Diabetologia 43:978–985

    Article  PubMed  CAS  Google Scholar 

  • Csaba G (1984) The present State in the phylogeny and ontogeny of hormone receptors. Horm Metabol Res 16:329–335

    Article  CAS  Google Scholar 

  • Dabelea D, Knowler WC, Pettitt DJ (2000 a) Effect of diabetes in pregnancy on offspring: Follow-up research in the Pima Indians. J Matern Fetal Med 9:83–88

    Article  PubMed  CAS  Google Scholar 

  • Dabelea D, Hanson RL, Lindsay RS, Pettitt DJ, Imperatore G, Gabir MM, Roumain J, et al (2000 b) Intrauterine exposure to diabetes conveys risks for Type II diabetes and obesity: a study of discordant sibships. Diabetes 49:2208–2211

    PubMed  CAS  Google Scholar 

  • Dahri S, Snoeck A, Reusens-Billen B, Remacle C, Hoet JJ (1991) Islet function in offspring of mothers on low protein diet during gestation. Diabetes 40:115–120

    PubMed  CAS  Google Scholar 

  • Davidowa H, Plagemann A (2000) Decreased inhibition by leptin of hypothalamic arcuate neurons in neonatally overfed young rats. NeuroReport 11:2795–2798

    PubMed  CAS  Google Scholar 

  • Deutsche Diabetes-Gesellschaft (2000) Evidenzbasierte Diabetes-Leitlinien

    Google Scholar 

  • Dietz WH (1994) Critical periods in childhood for the development of obesity. Am J Clin Nutr 59:955–959

    PubMed  CAS  Google Scholar 

  • Dörner G (1974) Problems and terminology of functional teratology. Acta Biol Med Germ 34:1093–1095

    Google Scholar 

  • Dörner G (1975) Perinatal hormone levels and brain organization. In: Stumpf W, Grant LD (eds) Anatomical neuroendocrinology. Karger, Basel, pp 245–252

    Google Scholar 

  • Dörner G (1976) Hormones and brain differentiation. Elsevier, Amsterdam

    Google Scholar 

  • Dörner G (1989) Hormone-dependent brain development and neuroendocrine prophylaxis. Exp Clin Endocrinol 94:4–22

    PubMed  Google Scholar 

  • Dörner G, Mohnike A (1976) Further evidence for a predominantly maternal transmission of maturity-onset type diabetes. Endokrinologie 68:121–124

    PubMed  Google Scholar 

  • Dörner G, Mohnike A (1977) Zur Bedeutung der perinatalen Überernährung für die Pathogenese der Fettsucht und des Diabetes mellitus. Dtsch Gesundheitsw 32:2325–2327

    Google Scholar 

  • Dörner G, Plagemann A (1994) Perinatal hyperinsulinism as possible predisposing factor for diabetes mellitus, obesity and enhanced cardiovascular risk in later life. Horm Metab Res 26:213–221

    PubMed  Google Scholar 

  • Dörner G, Grychtolik H, Julitz M (1977) Überernährung in den ersten drei Lebensmonaten als entscheidender Risikofaktor für die Entwicklung von Fettsucht und ihrer Folgeerkrankungen. Dtsch Gesundheitsw 32:6–9

    Google Scholar 

  • Dörner G, Thoelke H, Mohnike A, Schneider H (1985) High food supply in perinatal life appears to favour the development of insulin-treated diabetes mellitus (ITDM) in later life. Exp Clin Endocrinol 85:1–6

    PubMed  Google Scholar 

  • Dörner G, Plagemann A, Reinagel H (1987) Familial diabetes aggregation in type I diabetics: gestational diabetes an apparent risk factor for increased diabetes susceptibility in the offspring. Exp Clin Endocrinol 89:84–90

    PubMed  Google Scholar 

  • Dörner G, Plagemann A, Rückert J, Götz F, Rohde W, Stahl F, Kürschner U, et al (1988) teratogenetic maternofetal transmission and prevention of diabetes susceptibility. Exp Clin Endocrinol 91:247–258

    PubMed  Google Scholar 

  • Dörner G, Plagemann A, Neu A, Rosenbauer J (2000) Gestational diabetes as risk factor for type I childhood-onset diabetes in the offspring. Neuroendocrinol Lett 21:355–359

    PubMed  Google Scholar 

  • Dubos R, Savage D, Schaedler R (1966) Biological Freudianism: lasting effects of early environmental influences. Pediatrics 38:789–800

    PubMed  CAS  Google Scholar 

  • Eid EE (1970) Follow-up study of physical growth of children who had excessive weight gain in first six months of life. BMJ 2:74–76

    PubMed  CAS  Google Scholar 

  • Eriksson JG, Forsén T, Winter PD, Osmond C, Barker DJP (1999) Catch-up growth in childhood and death from coronary heart disease: longitudinal study. BMJ 318:427–431

    PubMed  CAS  Google Scholar 

  • Fewtrell MS, Doherty C, Cole TJ, Stafford M, Hales CN, Lucas A (2000) Effects of size at birth, gestational age and early growth in preterm infants on glucose and insulin concentrations at 9–12 years. Diabetologia 43:714–717

    Article  PubMed  CAS  Google Scholar 

  • Forsén T, Eriksson JG, Tuomilhto J, Osmond C, Barker DJP (1999) Growth in utero and during childhood among women who develop coronary heart disease: longitudinal study. BMJ 319:1403–1407

    PubMed  Google Scholar 

  • Francis DD, Meaney MJ (1999) Maternal care and the development of stress response. Curr Opin Neurobiol 9:128–134

    Article  PubMed  CAS  Google Scholar 

  • Freinkel N (1980) Of pregnancy and progeny. Banting lecture 1980. Diabetes 29:1023–1035

    PubMed  CAS  Google Scholar 

  • Freinkel N, Metzger BE (1979) Pregnancy as a tissue culture experience: the critical implications of maternal metabolism for fetal development. In: Pregnancy Metabolism, Diabetes, and the Fetus. Ciba Foundation Symposium 63. Excerpta Medica, Amsterdam, pp 3–23

    Google Scholar 

  • Fukuda H, Noguchi T, Iritani N (2001) Transcriptional regulation of insulin receptor gene promoter in rat hepatocytes. Biochem Biophys Res Commun 280:1274–1278

    PubMed  CAS  Google Scholar 

  • Garofano A, Czernichow P, Bréant B (1999) Effect of aging on beta-cell mass and function in rats malnourished during the perinatal period. Diabetologia 42:711–718

    Article  PubMed  CAS  Google Scholar 

  • Götz F, Dörner G, Malz U, Rohde W, Stahl F, Poppe I, Schulze M, et al (1993) Short-and long-term effects of perinatal interleukin-lβ-application in rats. Neuroendocrinology 58:344–351

    PubMed  Google Scholar 

  • Gray IP, Cooper PA, Cory BJ, Toman M, Crowther NJ (2002) The intrauterine environment is a strong determinant of glucose tolerance during the neonatal period, even in prematurity. J Clin Endocrinol Metab 87:4252–4256

    Article  PubMed  CAS  Google Scholar 

  • Grote E (1981) The CNS control of glucose metabolism. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  • Hales CN, Barker DJP (1992) Type 2 (non-insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesis. Diabetologia 35:595–601

    Article  PubMed  CAS  Google Scholar 

  • Hales CN, Desai M, Ozanne SE (1997) The thrifty phenotype hypothesis: how does it look after 5 years? Diabet Med 14:189–195

    Article  PubMed  CAS  Google Scholar 

  • Hanefeld M, Leonhardt W (1980) Das metabolische Syndrom. Dtsch Gesundheitsw 36:545–551

    Google Scholar 

  • Hoet JJ, Ozanne S, Reusens B (2000) Influences of pre-and postnatal nutritional exposures on vascular/endocrine systems in animals. Environ Health Perspect 108(Suppl 3):563–568

    PubMed  Google Scholar 

  • Huizinga CT, Oudejans CB, Delemarre-van de Waal HA (2001) Persistent changes in somatostatin and neuropeptide Y mRNA levels but not in growth hormone-releasing hormone mRNA levels in adult rats after intrauterine growth retardation. J Endocrinol 168:273–281

    Article  PubMed  CAS  Google Scholar 

  • Jaenisch R (1997) DNA methylation and imprinting: why bother? Trends Gen 13:323–329

    CAS  Google Scholar 

  • Jones PL, Veesnstra GC, Wade PA, Vermaak D, Kass SU, Landsberger N, et al (1998) Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nature Gen 19:187–191

    CAS  Google Scholar 

  • Kalra SP, Kalra PS (1996) Nutritional infertility: the role of the interconnected hypothalamic neuropeptide Y-galanin-opioid network. Front Neuroendocrinol 17:371–401

    PubMed  CAS  Google Scholar 

  • Kramer MS, Barr RG, Leduc DG, Boisjoly C, Pless IB (1985) Infant determinants of childhood weight and adiposity. J Pediatr 107:104–107

    PubMed  CAS  Google Scholar 

  • Lamarck JB (1809) Philosophie zoologiques. Paris

    Google Scholar 

  • Larsen F, Gundersen G, Lopez R, Prydz H (1992) CpG islands as gene markers in the human genome. Genomics 13:1095–1097

    Article  PubMed  CAS  Google Scholar 

  • Leibowitz SF, Akabayashi A, Wang J (1998) Obesity on a high-fat diet: role of hypothalamic galanin in neurons of the anterior paraventricular nucleus projecting to the median eminence. J Neurosci 18:2709–2719

    PubMed  CAS  Google Scholar 

  • Levin BE (2000) The obesity epidemic: metabolic imprinting on genetically susceptible neural circuits. Obes Res 8:342–347

    Article  PubMed  CAS  Google Scholar 

  • Lorenz K (1935) Der Kumpan in der Umwelt des Vogels: der Artgenosse als auslösendes Moment sozialer Verhaltensweisen. Journal für Ornithologie, S 83

    Google Scholar 

  • Lucas A (1991) Programming by early nutrition in man. In: The childhood environment and adult disease. Ciba Foundation Symposium 156. Wiley, Chichester, pp 38–55

    Google Scholar 

  • Lucas A, Fewtrell MS, Cole TJ (1999) Fetal origins of adult disease — the hypothesis revisited. BMJ 319:245–249

    PubMed  CAS  Google Scholar 

  • Martorell R, Stein AD, Schroeder DG (2001) Early nutrition and later adiposity. J Nutr 131:874–880

    Google Scholar 

  • McCance DR, Pettitt DJ, Hanson RL, Jacobsson LT, Knowler WC, Bennett PH (1994) Birth weight and non-insulin dependent diabetes: thrifty genotype, thrifty phenotype, or surviving small baby genotype? BMJ 308:942–945

    PubMed  CAS  Google Scholar 

  • McEwen BS (1992) Steroid hormones: effects on brain development and function. Horm Res 37:1–10

    Article  PubMed  CAS  Google Scholar 

  • Meaney MJ, Diorio J, Francis D, Widdowson J, LaPlante P, Caldji CH, Sharma S, et al (1996) Early environmental regulation of forebrain glucocorticoid receptor gene expression: implications for adrenocortical responses to stress. Dev Neurosci 18:49–72

    PubMed  CAS  Google Scholar 

  • Minth-Worby CA (1994) Transcriptional regulation of the human neuropeptide Y gene by nerve growth factor. J Biol Chem 269:15460–15468

    PubMed  CAS  Google Scholar 

  • Moura AS, De Souza Caldeira Filho J, De Freitas MP, De Sa CC (1997) Insulin secretion impairment and insulin sensitivity improvement in adult rats undernourished during early lactation. Res Comm Mol Pathol Pharmacol 96:179–192

    CAS  Google Scholar 

  • Nan X, Ng HH, Johnson CA, Laherty CD, Turner BM, Eisenman RN, Bird A (1998) Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 393:386–389

    PubMed  CAS  Google Scholar 

  • Nerup J, Mandrup-Poulsen T, Molvig J, Helquist S, Wogensen L, Egeberg J (1988) Mechanisms of pancreatic β-cell destruction in type I diabetes. Diabetes Care 11(Suppl l):16–23

    PubMed  Google Scholar 

  • Newell-Price J, King P, Clark AJ (2001) The CpG island promotor of the human proopiomelanocortin gene is methylated in nonexpressing normal tissue and tumors and represses expression. Mol Endocrinol 15:338–348

    Article  PubMed  CAS  Google Scholar 

  • Oh W, Gelardi NL, Cha CJ (1991) The cross-generation effect of neonatal macrosomia in rat pups of streptozotocin-induced diabetes. Pediatr Res 29:606–610

    PubMed  CAS  Google Scholar 

  • Ozanne SE, Wang CL, Dorling MW, Petry CJ (1999) Dissection of the metabolic actions of insulin in adipocytes from early growth-retarded male rats. J Endocrinol 162:313–319

    Article  PubMed  CAS  Google Scholar 

  • Pedersen J (1977) The pregnant diabetic and her newborn. Munksgaard, Copenhagen

    Google Scholar 

  • Pedrazzi P, Cattaneo L, Valeriana L, Boschi S, Cocchi D, Zoli M (1998) Hypothalamic neuropeptide Y and galanin in overweight rats fed a Cafeteria diet. Peptides 19:157–165

    Article  PubMed  CAS  Google Scholar 

  • Penicaud L, Cousin B, Leloup C, Atef N, Casteilla L, Ktorza A (1996) Changes in autonomic nervous system activity and consecutive hyperinsulinaemia: respective roles in the development of obesity in rodents. Diabetes Metab 22:15–24

    PubMed  CAS  Google Scholar 

  • Petry CJ, Hales CN (1999) Intrauterine development and its relationship to type II diabetes mellitus. In: Hitman GA (ed) Type II diabetes: prediction and prevention. Wiley, Chichester, pp 153–168

    Google Scholar 

  • Petry CJ, Ozanne SE, Wang CL, Hales CN (1997) Early protein restriction and obesity independently induce hypertension in 1-year-old rats. Clin Sci 93:147–152

    PubMed  CAS  Google Scholar 

  • Pettitt DJ, Baird HR, Aleck KA, Bennett PH, Knowler WC (1983) Excessive obesity in offspring of Pima Indian women with diabetes during pregnancy. New Engl J Med 308:242–245

    Article  PubMed  CAS  Google Scholar 

  • Phillipps DI (1998) Birth weight and the future development of diabetes. Diabetes Care 21(Suppl 2):B150–B155

    Google Scholar 

  • Plagemann A, Harder T, Kohlhoff R, Rohde W, Dörner G (1997 a) Overweight and obesity in infants of mothers with long-term insulin-dependent diabetes or gestational diabetes. Int J Obesity 21:451–456

    CAS  Google Scholar 

  • Plagemann A, Harder T, Kohlhoff R, Rohde W, Dörner G (1997 b) Glucose tolerance and insulin secretion in infants of mothers with pregestational insulin-dependent diabetes mellitus or gestational diabetes. Diabetologia 40:1094–1100

    Article  PubMed  CAS  Google Scholar 

  • Plagemann A, Staudt A, Götz F, Malz U, Rohde W, Rake A, Dörner G (1998 a) Long-term effects of early postnatally administered interleukin-1β on the hypothalamic-pituitary-adrenal (HPA) axis in rats. Endocrine Regulations 32:77–85

    PubMed  CAS  Google Scholar 

  • Plagemann A, Harder T, Rake A, Melchior K, Rittel F, Rohde W, Dörner G (1998 b) Hypothalamic insulin and neuropeptide Y in the offspring of gestational diabetic mother rats. NeuroReport 9:4069–4073

    PubMed  CAS  Google Scholar 

  • Plagemann A, Harder T, Janert U, Rake A, Rittel F, Rohde W, Dörner G (1999 a) Malformations of hypothalamic nuclei in hyperinsulinaemic offspring of gestational diabetic mother rats. Dev Neurosci 21:58–67

    Article  PubMed  CAS  Google Scholar 

  • Plagemann A, Harder T, Melchior K, Rake A, Rohde W, Dörner G (1999 b) Elevation of hypothalamic neuropeptide Y-neurons in adult offspring of diabetic mother rats. NeuroReport 10:3211–3216

    PubMed  CAS  Google Scholar 

  • Plagemann A, Harder T, Rake A, Voits M, Fink H, Rohde W, Dörner G (1999 c) Perinatal elevation of hypothalamic insulin, acquired malformation of hypothalamic galaninergic neurons, and syndrome X-like alterations in adulthood of neonatally overfed rats. Brain Res 836:146–155

    Article  PubMed  CAS  Google Scholar 

  • Plagemann A, Harder T, Rake A, Waas T, Melchior K, Ziska T, Rohde W, et al (1999 d) Observations on the orexigenic hypothalamic neuropeptide Y-system in neonatally overfed weanling rats. J Neuroendocrinol 11:541–546

    Article  PubMed  CAS  Google Scholar 

  • Plagemann A, Rake A, Harder T, Melchior K, Rohde W, Dörner G (2000) Hypothalamic nuclei are malformed in weanling offspring of low-protein malnourished rat dams. J Nutr 130:2582–2590

    PubMed  CAS  Google Scholar 

  • Ravelli GP, Stein ZA, Susser MW (1976) Obesity in young men after famine exposure in utero and early infancy. New Engl J Med 295:349–353

    Article  PubMed  CAS  Google Scholar 

  • Razin A, Shemer R (1995) DNA methylation in early development. Hum Mol Gen 4:1751–1755

    PubMed  CAS  Google Scholar 

  • Reaven GM (1988) Role of insulin resistance in human disease. Banting lecture 1988. Diabetes 37:1595–1607

    PubMed  CAS  Google Scholar 

  • Rees WD, Hay SM, Brown DS, Antipatis C, Palmer RM (2000) Maternal protein deficiency causes hypermethylation of DNA in livers of rat fetuses. J Nutr 130:1821–1826

    PubMed  CAS  Google Scholar 

  • Reul JM, Stec I, Wiegers GJ, Labeur MS, Linthorst AC, Arzt E, Holsboer F (1994) Prenatal immune challenge alters the hypothalamic-pituitary-adrenal axis in adult rats. J Clin Invest 93:2600–2607

    PubMed  CAS  Google Scholar 

  • Saint-Hilaire EG (1837) Histoire geénérale et particulière des anomalies de l’organisation chez l’homme et les animaux ou traité de tératologie. Bruxelles

    Google Scholar 

  • Silverman BL, Rizzo T, Green OC, Cho NH, Winter RJ, Ogata ES, Richards GE, et al (1991) Long-term prospective evaluation of offspring of diabetic mothers. Diabetes 40(Suppl 2):121–125

    PubMed  Google Scholar 

  • Silverman BL, Metzger BE, Cho NH, Loeb CA (1995) Impaired glucose tolerance in adolescent offspring of diabetic mothers. Diabetes Care 18:611–617

    PubMed  CAS  Google Scholar 

  • Silverman BL, Purdy LP, Metzger BE (1996) The intrauterine environment: implications for the offspring of diabetic mothers. Diabetes Rev 4:21–35

    Google Scholar 

  • Stettier NS, Zemel BS, Kumanyika S, Stallings VA (2002) Infant weight gain in a multicenter, cohort study. Pediatrics 109:194–199

    Google Scholar 

  • Strauss RS (1997) Effects of the intrauterine environment on childhood growth. Br Med Bull 53:81–95

    PubMed  CAS  Google Scholar 

  • Strubbe JH, Steffens AB (1993) Neural control of insulin secretion. Horm Metab Res 25:507–512

    Article  PubMed  CAS  Google Scholar 

  • Swaab DF, Boer GJ, Feenstra MG (1988) Concept of functional neuroteratology and the importance of neurochemistry. Prog Brain Res 73:3–13

    PubMed  CAS  Google Scholar 

  • Szabo AJ (1983) CNS regulation of carbohydrate metabolism. Academic Press, New York

    Google Scholar 

  • Vanhala MJ, Vanhala PT, Keinänen-Kiukaanniemi SM, Kumpusalo EA, Takala JK (1999) Relative weight gain and obesity as a child predict metabolic syndrome as an adult. Int J Obesity 23:656–659

    CAS  Google Scholar 

  • Waterland RA, Garza C (1999) Potential mechanisms of metabolic imprinting that lead to chronic disease. Am J Clin Nutr 69:179–197

    PubMed  CAS  Google Scholar 

  • Weiss PA (1988) Gestational diabetes: a survey and the Graz approach to diagnosis and therapy. In: Weiss PA, Coustan DR (eds) Gestational diabetes. Springer, Berlin Heidelberg New York Tokyo, pp 1–58

    Google Scholar 

  • Weiss PA, Scholz HS, Haas J, Tamussino KF, Seissler J, Borkenstein MH (2000) Long-term follow-up of infants of mothers with type I Diabetes. Diabetes Care 23:905–911

    PubMed  CAS  Google Scholar 

  • Werboff J, Gottlieb JS (1963) Drugs in pregnancy: behavioral teratology. Obstet Gynecol Surv 18:420–423

    Google Scholar 

  • WHO (1994) Prevention of diabetes mellitus

    Google Scholar 

  • WHO (1995) Obesity

    Google Scholar 

  • Whitaker RC, Dietz WH (1998) Role of the prenatal environment in the development of obesity. J Pediatr 132:768–776

    PubMed  CAS  Google Scholar 

  • Wilkin TJ (2001) The accelerator hypothesis: weight gain is the missing link between type I and type II diabetes. Diabetologia 44:914–922

    Article  PubMed  CAS  Google Scholar 

  • Woods SC, Seeley RJ, Porte DJ, Schwartz MW (1998) Signals that regulate food intake and energy homeostasis. Science 280:1378–1383

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM (1994) Positional cloning of the mouse obese gene and its human homologue. Nature 372:425–431

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Plagemann, A. (2005). Fetale Programmierung und funktioneile Teratologie. In: Ganten, D., Ruckpaul, K. (eds) Molekularmedizinische Grundlagen von fetalen und neonatalen Erkrankungen. Molekulare Medizin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26524-4_12

Download citation

Publish with us

Policies and ethics