Skip to main content

Advertisement

Log in

Periosteum: Characteristic imaging findings with emphasis on radiologic-pathologic comparisons

  • Review Article
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract

The periosteum covers most bone structures. It has an outer fibrous layer and an inner cambial layer that exhibits osteogenic activity. The periosteum is a dynamic structure that plays a major role in bone modeling and remodeling under normal conditions. In several disorders such as infections, benign and malignant tumors, and systemic diseases, the osteogenic potential of the periosteum is stimulated and new bone is produced. The newly formed bone added onto the surface of the cortex adopts various configurations depending on the modalities and pace of bone production. Our aim here is to describe the anatomy, histology, and physiology of the periosteum and to review the various patterns of periosteal reaction with emphasis on relations between radiological and histopathological findings. A careful evaluation of the periosteal reaction and appearance of the underlying cortex, in combination with the MRI, clinical, and laboratory data, provides valuable information on lesion duration and aggressiveness, thereby assisting in the etiological diagnosis and optimizing patient management. A solid reaction strongly suggests a benign and slow-growing process that gives the bone enough time to wall off the lesion. Single lamellar reactions occur in acute and usually benign diseases. Multilamellar reactions are associated with intermediate aggressiveness and a growth rate close to the limit of the walling-off capabilities of the bone. Spiculated, interrupted, and complex combined reactions carry the worst prognosis, as they occur in the most aggressive and fast-growing diseases: the periosteum attempts to create new bone but is overwhelmed and may be breached.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Dwek JR. The periosteum: what is it, where is it, and what mimics it in its absence? Skeletal Radiol. 2010;39(4):319–23.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Rauch F. Bone growth in length and width: the Yin and Yang of bone stability. J Musculoskelet Neuronal Interact. 2005;5(3):194–201.

    CAS  PubMed  Google Scholar 

  3. Orwoll ES. Toward an expanded understanding of the role of the periosteum in skeletal health. J Bone Miner Res. 2003;18(6):949–54.

    Article  PubMed  Google Scholar 

  4. Zhang X, Awad HA, O’Keefe RJ, Guldberg RE, Schwarz EM. A perspective: engineering periosteum for structural bone graft healing. Clin Orthop Relat Res. 2008;466(8):1777–87.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Allen MR, Hock JM, Burr DB. Periosteum: biology, regulation, and response to osteoporosis therapies. Bone. 2004;35(5):1003–12.

    Article  CAS  PubMed  Google Scholar 

  6. Ragsdale BD, Madewell JE, Sweet DE. Radiologic and pathologic analysis of solitary bone lesions. Part II: periosteal reactions. Radiol Clin North Am. 1981;19(4):749–83.

    CAS  PubMed  Google Scholar 

  7. Mills SE, editor. Histology for pathologists. 4th ed. Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins; 2012.

    Google Scholar 

  8. Klein MJ. Non-Neoplastic Diseases of Bones and Joints: Atlas of Nontumor Pathology. American Registry of Pathology; 2011.

  9. Hill EL, Elde R. Distribution of CGRP-, VIP-, D beta H-, SP-, and NPY-immunoreactive nerves in the periosteum of the rat. Cell Tissue Res. 1991;264(3):469–80.

    Article  CAS  PubMed  Google Scholar 

  10. Hohmann EL, Elde RP, Rysavy JA, Einzig S, Gebhard RL. Innervation of periosteum and bone by sympathetic vasoactive intestinal peptide-containing nerve fibers. Science. 1986;232(4752):868–71.

    Article  CAS  PubMed  Google Scholar 

  11. Mach DB, Rogers SD, Sabino MC, Luger NM, Schwei MJ, Pomonis JD, et al. Origins of skeletal pain: sensory and sympathetic innervation of the mouse femur. Neuroscience. 2002;113(1):155–66.

    Article  CAS  PubMed  Google Scholar 

  12. Tonna EA. Response of the cellular phase of the skeleton to trauma. Periodontics. 1966;4(3):105–14.

    CAS  PubMed  Google Scholar 

  13. Tang XM, Chai BF. Ultrastructural investigation of osteogenic cells. Chin Med J. 1986;99(12):950–6.

    CAS  PubMed  Google Scholar 

  14. Squier CA, Ghoneim S, Kremenak CR. Ultrastructure of the periosteum from membrane bone. J Anat. 1990;171:233–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Ito Y, Fitzsimmons JS, Sanyal A, Mello MA, Mukherjee N, O’Driscoll SW. Localization of chondrocyte precursors in periosteum. Osteoarthr Cartil. 2001;9(3):215–23.

    Article  CAS  PubMed  Google Scholar 

  16. Diaz-Flores L, Gutierrez R, Lopez-Alonso A, Gonzalez R, Varela H. Pericytes as a supplementary source of osteoblasts in periosteal osteogenesis. Clin Orthop Relat Res. 1992;275:280–6.

    PubMed  Google Scholar 

  17. Duhamel H. Cited by Bassett CAL in current concepts of bone formation. J Bone Joint Surg. 1739;44-A:1217–44.

    Google Scholar 

  18. Ollier L. Traité expérimentale et clinique de la régénération des os et de la production artificielle du tissu osseux. Paris: Masson et Fils; 1867.

    Google Scholar 

  19. Jacobsen FS. Periosteum: its relation to pediatric fractures. J Pediatr Orthop B. 1997;6(2):84–90.

    Article  CAS  PubMed  Google Scholar 

  20. Szulc P, Seeman E, Duboeuf F, Sornay-Rendu E, Delmas PD. Bone fragility: failure of periosteal apposition to compensate for increased endocortical resorption in postmenopausal women. J Bone Miner Res. 2006;21(12):1856–63.

    Article  PubMed  Google Scholar 

  21. Seeman E. Periosteal bone formation–a neglected determinant of bone strength. N Engl J Med. 2003;349(4):320–3.

    Article  PubMed  Google Scholar 

  22. Kim B-T, Mosekilde L, Duan Y, Zhang X-Z, Tornvig L, Thomsen JS, et al. The structural and hormonal basis of sex differences in peak appendicular bone strength in rats. J Bone Miner Res. 2003;18(1):150–5.

    Article  CAS  PubMed  Google Scholar 

  23. Turner RT, Wakley GK, Hannon KS. Differential effects of androgens on cortical bone histomorphometry in gonadectomized male and female rats. J Orthop Res. 1990;8(4):612–7.

    Article  CAS  PubMed  Google Scholar 

  24. Parfitt AM. Parathyroid hormone and periosteal bone expansion. J Bone Miner Res. 2002;17(10):1741–3.

    Article  CAS  PubMed  Google Scholar 

  25. Dempster DW, Cosman F, Kurland ES, Zhou H, Nieves J, Woelfert L, et al. Effects of daily treatment with parathyroid hormone on bone microarchitecture and turnover in patients with osteoporosis: a paired biopsy study. J Bone Miner Res. 2001;16(10):1846–53.

    Article  CAS  PubMed  Google Scholar 

  26. Jiang Y, Zhao JJ, Mitlak BH, Wang O, Genant HK, Eriksen EF. Recombinant human parathyroid hormone (1-34) [teriparatide] improves both cortical and cancellous bone structure. J Bone Miner Res. 2003;18(11):1932–41.

    Article  CAS  PubMed  Google Scholar 

  27. Ma YL, Zeng Q, Donley DW, Ste-Marie L-G, Gallagher JC, Dalsky GP, et al. Teriparatide increases bone formation in modeling and remodeling osteons and enhances IGF-II immunoreactivity in postmenopausal women with osteoporosis. J Bone Miner Res. 2006;21(6):855–64.

    Article  CAS  PubMed  Google Scholar 

  28. Specker B, Binkley T. Randomized trial of physical activity and calcium supplementation on bone mineral content in 3- to 5-year-old children. J Bone Miner Res. 2003;18(5):885–92.

    Article  CAS  PubMed  Google Scholar 

  29. Zhu K, Greenfield H, Du X, Zhang Q, Fraser DR. Effects of milk supplementation on cortical bone gain in Chinese girls aged 10-12 years. Asia Pac J Clin Nutr. 2003;12:S47.

    Google Scholar 

  30. McKenzie JA, Silva MJ. Comparing histological, vascular and molecular responses associated with woven and lamellar bone formation induced by mechanical loading in the rat ulna. Bone. 2011;48(2):250–8.

    Article  PubMed Central  PubMed  Google Scholar 

  31. Feik SA, Ellender G, Crowe DM, Ramm-Anderson SM. Periosteal response in translation-induced bone remodelling. J Anat. 1990;171:69–84.

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Frost HM, Schönau E. The “muscle-bone unit” in children and adolescents: a 2000 overview. J Pediatr Endocrinol Metab. 2000;13(6):571–90.

    Article  CAS  PubMed  Google Scholar 

  33. Hamrick MW, McNeil PL, Patterson SL. Role of muscle-derived growth factors in bone formation. J Musculoskelet Neuronal Interact. 2010;10(1):64–70.

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Elkasrawy MN, Hamrick MW. Myostatin (GDF-8) as a key factor linking muscle mass and bone structure. J Musculoskelet Neuronal Interact. 2010;10(1):56–63.

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Simpson AH. The blood supply of the periosteum. J Anat. 1985;140(Pt 4):697–704.

    PubMed Central  PubMed  Google Scholar 

  36. Kenan S, Abdelwahab IF, Klein MJ, Hermann G, Lewis MM. Lesions of juxtacortical origin (surface lesions of bone). Skeletal Radiol. 1993;22(5):337–57.

    Article  CAS  PubMed  Google Scholar 

  37. Wenaden AET, Szyszko TA, Saifuddin A. Imaging of periosteal reactions associated with focal lesions of bone. Clin Radiol. 2005;60(4):439–56.

    Article  CAS  PubMed  Google Scholar 

  38. Rana RS, Wu JS, Eisenberg RL. Periosteal reaction. AJR Am J Roentgenol. 2009;193(4):W259–272.

    Article  PubMed  Google Scholar 

  39. Miller TT. Bone tumors and tumorlike conditions: analysis with conventional radiography. Radiology. 2008;246(3):662–74.

    Article  PubMed  Google Scholar 

  40. Ballikar R, Balikar R, Redkar NN, Patil MA, Pillai R. Hair-on-end appearance in a case of thalassemia intermedia. BMJ Case Rep. 2013;2013.

  41. Bastug D, Ortiz O, Schochet SS. Hemangiomas in the calvaria: imaging findings. AJR Am J Roentgenol. 1995;164(3):683–7.

    Article  CAS  PubMed  Google Scholar 

  42. Kim KS, Rogers LF, Goldblatt D. CT features of hyperostosing meningioma en plaque. AJR Am J Roentgenol. 1987;149(5):1017–23.

    Article  CAS  PubMed  Google Scholar 

  43. Sundaram M, McGuire MH. Computed tomography or magnetic resonance for evaluating the solitary tumor or tumor-like lesion of bone? Skeletal Radiol. 1988;17(6):393–401.

    Article  CAS  PubMed  Google Scholar 

  44. Magid D. Two-dimensional and three-dimensional computed tomographic imaging in musculoskeletal tumors. Radiol Clin North Am. 1993;31(2):425–47.

    CAS  PubMed  Google Scholar 

  45. Greenfield GB, Warren DL, Clark RA. MR imaging of periosteal and cortical changes of bone. Radiographics. 1991;11(4):611–23. discussion 624.

    Article  CAS  PubMed  Google Scholar 

  46. Dosdá R, Martí-Bonmatí L, Menor F, Aparisi F, Rodrigo C, Ricart V. Comparison of plain radiographs and magnetic resonance images in the evaluation of periosteal reaction and osteoid matrix in osteosarcomas. MAGMA. 1999;9(1–2):72–80.

    Article  PubMed  Google Scholar 

  47. Spaeth HJ, Chandnani VP, Beltran J, Lucas JG, Ortiz I, King MA, et al. Magnetic resonance imaging detection of early experimental periostitis. Comparison of magnetic resonance imaging, computed tomography, and plain radiography with histopathologic correlation. Invest Radiol. 1991;26(4):304–8.

    Article  CAS  PubMed  Google Scholar 

  48. Bloem JL, Taminiau AH, Eulderink F, Hermans J, Pauwels EK. Radiologic staging of primary bone sarcoma: MR imaging, scintigraphy, angiography, and CT correlated with pathologic examination. Radiology. 1988;169(3):805–10.

    Article  CAS  PubMed  Google Scholar 

  49. Frouge C, Vanel D, Coffre C, Couanet D, Contesso G, Sarrazin D. The role of magnetic resonance imaging in the evaluation of Ewing sarcoma. A report of 27 cases. Skeletal Radiol. 1988;17(6):387–92.

    Article  CAS  PubMed  Google Scholar 

  50. Saifuddin A. The accuracy of imaging in the local staging of appendicular osteosarcoma. Skeletal Radiol. 2002;31(4):191–201.

    Article  PubMed  Google Scholar 

  51. Saifuddin A, Burnett SJ, Mitchell R. Pictorial review: ultrasonography of primary bone tumours. Clin Radiol. 1998;53(4):239–46.

    Article  CAS  PubMed  Google Scholar 

  52. Bilkay U, Tokat C, Helvaci E, Ozek C, Zekioglu O, Onat T, et al. Osteogenic capacities of tibial and cranial periosteum: a biochemical and histologic study. J Craniofac Surg. 2008;19(2):453–8.

    Article  PubMed  Google Scholar 

  53. Lodwick G. A systematic approach to the roentgen diagnosis of bone tumors. Tumors of bone and soft tissue. M.D. Anderson Hospital and Tumor Institute, Chicago; 1965. p. 49–68.

  54. Lodwick GS, Wilson AJ, Farrell C, Virtama P, Dittrich F. Determining growth rates of focal lesions of bone from radiographs. Radiology. 1980;134(3):577–83.

    Article  CAS  PubMed  Google Scholar 

  55. Madewell JE, Ragsdale BD, Sweet DE. Radiologic and pathologic analysis of solitary bone lesions. Part I: internal margins. Radiol Clin North Am. 1981;19(4):715–48.

    CAS  PubMed  Google Scholar 

Download references

Conflict of interest

None of the authors have any conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damien Bisseret.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bisseret, D., Kaci, R., Lafage-Proust, MH. et al. Periosteum: Characteristic imaging findings with emphasis on radiologic-pathologic comparisons. Skeletal Radiol 44, 321–338 (2015). https://doi.org/10.1007/s00256-014-1976-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-014-1976-5

Keywords

Navigation